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Slow motion of two spheres in a shear field 

By C .  J. LIN, K. J. LEE AND N. F. SATHER 
Department of Chemical Engineering, University of Washington, 

Seattle, Washington 98105 

(Received 10 November 1969) 

The exact solution of the Stokes equations for the creeping motion of two spheres 
of arbitrary size and arbitrarily oriented with respect to a shear field is obtained 
by use of spherical bipolar co-ordinates. Numerical results are given for two 
special cases: (1) the free motion of two equal-sized spheres in simple shear flow 
and (2) the free motion of a sphere near a wall in the rotational shear field between 
two parallel disks rotating at  different rates. The sphere trajectories calculated 
for the first of these problems are found to agree fairly well with those observed 
experimentally. 

1. Introduction 
In  this paper we report some results obtained from the exact solution of the 

Stokes equations for the quasi-static motion of two spherical particles in the 
shear field of a viscous fluid. Since the method used to obtain the solution can 
accommodate spheres of different size, a description of the limiting case of the 
motion of a particle near a planar boundary is also obtained. Our particular 
interest in this problem derives from its application in the theory of the viscosity 
of moderately concentrated suspensions of spherical particles. There are, however, 
other flow situations for which the analysis described here has potential applica- 
tion, for example, the settling of particles in a shear field and the motion of 
particles near walls. 

The solution is obtained by an extension of an exact procedure employing 
spherical bipolar co-ordinates that has been developed by several previous 
investigators. The first applications of the bipolar co-ordinate method were to 
the class of axisymmetric flows associated with the translation and rotation of 
spheres in a quiescent fluid. Jeffery (1915) analyzed the flow in the vicinity of 
two spheres rotating slowly about their line-of-centres and the corresponding 
problem of the rotation of a sphere about an axis perpendicular to a plane 
boundary. Stimson & Jeffery (1926) considered the creeping motion of two 
spheres moving without rotation along their line-of-centres. The quasi-steady 
translation of a sphere perpendicular to a wall was determined independently 
by Brenner (1961) and Maude (1961). The application of the method to non- 
axisymmetric motions was initiated by Dean & O’Neill (1963), who studied the 
rotation of a sphere about an axis parallel to a wall. The problem of the transla- 
tion of a sphere parallel to a wall was solved by O’Neill (1964). Because of the 
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linearity of the Stokes equations the results for simple motions can be combined 
to generate solutions of more complex cases. In  this manner Goldman, Cox & 
Brenner (1966) determined the motion of two arbitrarily oriented spheres 
through a quiescent fluid, and Wakiya (1967) considered the more general problem 
of two spheres moving in a non-uniform velocity field. However, Wakiya’s results 
are for overall flows having a plane of symmetry and so do not describe the 
sphere and fluid motions when the particles are oriented arbitrarily with respect 
to a shear field. The solution of the latter problem is reported here. Since many 
of the steps in the analysis are similar to those of the above papers, only a brief 
summary of the method will be given; a complete discussion of the method and 
results is given in the thesis by Lin (1968). 

The formal solution of the problem is described in $ 2, leaving for $$3 and 4 
the discussion of numerical results for specific examples. Two limiting cases 
are considered there: the free motion of two neutrally buoyant, equal-sized 
spheres in simple shear flow and the free motion of a neutrally buoyant sphere 
near a wall in the rotational shear field between two parallel disks that are 
rotating with different angular velocities. 

2. Analysis for spheres of arbitrary size 
2.1. Velocity field 

Consider the problem of determining the quasi-steady velocity field in the 
vicinity of two spheres moving with arbitrary velocities in the shear field of an 
incompressible Newtonian fluid. We denote by u and p the local velocity and 
pressure fields, and by uo and p o  the corresponding fields that would be obtained 
were the spheres not there. The motion is assumed to be sufficiently slow that u 
and uo satisfy the Stokes equations for creeping flow, and the undisturbed 
fields u, and p o  are presumed known. The relative velocity and pressure fields, 
v = u - uo and q = p -p,, are then the solutions of 

v . v  = 0 (1) 

and pv2v = vq (2) 

that satisfy both the asymptotic conditions v + 0 and q + 0 far from the spheres 
and the no-slip boundary conditions on the sphere surfaces. The geometric 
quantities needed for stating the boundary conditions are shown in figure 1. 
The spheres are denoted I and 11, their radii by a, and a,,, and the distance 
between their centres is d.  The bispherical geometry of the boundary conditions 
is most easily accommodated by using the spherical bipolar co-ordinate system 
( c , ~ ,  4)  which moves with the spheres. The origin of the system is located on 
the line-of-centres at  the point which divides d into unequal parts h, and h,, 
such that h:-a$ = h:,-a:, = c2, where 

c = &d-’{[d2- (a: + a : ~ ) ] ~ -  4a:a:1}4. 

The co-ordinates themselves are defined by 

c sin 7 c sinh 6 
z =  

= coshc-cosy’ cash 6 - cos T/ 
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and $ = $, where p, z and are the co-ordinates in the cylindrical system oriented 
SO that the z axis coincides at all times with the line-of-centres. In  bispherical 
co-ordinates the surface of sphere I is given by = aI and that of sphere I1 by 
g = -  aII, where the aN are constants 

a, = cosech-l (uN/c) = cosh-l (hN/u,). 

FIGURE 1. Co-ordinate geometry. The surfaces of the spheres are defined by specifying 
the value of the bispherical oo-ordinate 6 :  for sphere I, 6 = a, and for sphere 11, 6 = -a,,, 
where aN = cosh-l (hN/aN) = cosech-l (aN/c) .  

With these definitions the boundary conditions are 

v(rI) = VI = U1+Q1x (rI-hIea)-u6 at  < = aI (3a)  

and v(rII) = VT1 = UI1+Q1I x (rII + hII e,) - up  at 6 = - aII. ( 3 b )  
Here UN and 8, are the translational and rotational velocities of the spheres, 
rN is the vector from the origin to a point on the surface of sphere N ,  and u# 
is the value of uo at  r,. 

From (1) and (2) we know that the pressure field satisfies the Laplace equation 
while the velocity field is of the form v = vp + vH, where vp = (q/Zp) r is a par- 
ticular solution of (2) and vH also satisfies the Laplace equation. The general 
solution of the Laplace equation in spherical bipolar co-ordinates can be obtained 
by separation of variables (Morse & Feshbach 1953), giving the following ex- 
pressions for the pressure field and the cylindrical components of the velocity 
field 
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where 
m 

W h  = (cosh - COB 7)g [AL, cosh (n + 4) < + BL, sinh (n + +) ~ ~ P ~ I + ~ ( c o s  7) 

for - 00 < m < a. Here Ppl(cos 7)  is the associated Legendre polynomial of 
the first kind of order n and rank Iml, and wk is of the form (5), but with A:, 
and Bk, replaced by x&, and &,. 

and Bkn are determined by requiring 
that the solution satisfy the continuity equation (1) and the boundary conditions 
(3); details of the procedure are given by Lin (1968).t This completes the formal 
solution of the flow problem. 

(5) 
n = I nal +i 

The unspecified constants AL,, BLn, 

2.2. Forces and torques on the spheres 

The hydrodynamical forces and torques experienced by the spheres during the 
course of their motion also can be expressed in terms of the coefficients A;, and 
Bin  of the velocity and pressure fields. Considering first sphere I, we define a 
spherical co-ordinate system (R, 0, @) having its origin a t  the centre of sphere I 
and its orientation such that its polar direction is the z axis and @ is the azimuthal 
angle $ of the original cylindrical co-ordinate system. The transformation rela- 
tions between the two systems are then R = { p z  + (z  - hI)2]&, 0 = tan-l p / ( z  - h,) 
and # = 4. 

The force and torque on sphere I are defined by 

where p R  is the radial component of the fluid stress p: 

p R  = eR.p = - e R p + p  (a --- i ) + $ V ( R . u ) .  (7)  

Evaluation of the surface integrals in (6) using the bispherical-co-ordinate solu- 
tions for v,,, vui and v, gives after lengthy calculation the following expressions 
for the Cartesian components of F and T: 

f Copies of a document containing an account of tho derivation of the solution and a 
tabulation of the resulting formulae for the constants can be obtained on request from the 
Editor or from the authors. 
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m 

and 

In each case the upper sign (+ )  is to be used for sphere I, while the lower sign 
( - ) is for sphere X I .  

The different fluid-particle motions that can be described by the foregoing 
analysis can be separated into two types: those for which the forces and torques 
are to be inferred from observations of the sphere motions and those for which 
the instantaneous linear and angular velocities of the spheres are to be calculated 
from knowledge of the forces and torques. In the former case the right-hand sides 
of (8a-f) are completely known so the forces and torques can be computed 
directly. An example of a problem of this type is the determination of the forces 
and torques needed to hold the spheres fixed in a given configuration rela.tive to 
the overall flow. In the latter case the left-hand sides of (Sa-f) are known, so the 
velocities UN and IRN, which appear implicitly in the right-hand sides, can be 
calculated. Included in this category is the calculation of settling trajectories 
and velocities of pairs of interacting spheres. Another example of a problem 
of this type is the determination of the trajectories of neutrally buoyant spheres 
moving freely (no net forces and torques) through a fluid. The results of calcula- 
tions of sphere trajectories for two different flow geometries are described in the 
remainder of this paper. 

T, = 2%7,Uc2 2 {(A<: f B&l) + n(n + 1)  (A$& B&1)}. (Sf 1 
?L=O 

3. Trajectories of two spheres in a simple shear field 
One of the more useful results that can be obtained from the preceding 

analysis is the calculation of interactional trajectories of pairs of neutrally 
buoyant spheres in a shear field. To be specific, we assume the spheres to be of 
equal size (aI = aII = a )  and the undisturbed field u, to be a simple shearing 
motion. The trajectories for unequal-sized spheres and for other choices for u,, 
although not reported here, can also be obtained from the analysis. Two simplifi- 
cations result from these assumptions: because uo is linear in r all of the coeffi- 
cients ALn and Bkn for Iml > 2 are zero, and because the spheres are identical 
in size the non-vanishing coefficients depend upon only one scalar quantity, 
a = cosh-l (hla), where h = h, = h,, = +&. 

The pasticle trajectories that we wish to describe are the time tracings of the 
relative positions of the two spheres with respect to the field uo. Hence, we shall 
adopt a second set of Cartesian co-ordinates (z', y', 2') having its origin a t  the 
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centre of sphere I1 and oriented such that its x' axis is parallel to the direction 
of the undisturbed velocity, that is, uo = Ke, .  y', where K is the constant shear 
rate. The co-ordinates x', y', x' of the centre of sphere I are made dimensionless by 
scaling them in units of sphere radii a. Since the spheres are neutrally buoyant 
and inertial effects are presumed negligible, the hydrodynamical forces and 
torques acting on the spheres must vanish: 

(9) FI = FII = TI = TI1 = 0. 

From these equations we find that U1 = - UI1 = U and 8 I  = GIr = 8, and we 
obtain, in addition, expressions for U and 8 in terms of the Ahn and Bin .  

The expressions so obtained for the dimensionless velocities U* = U/(&aK) and 
a* = Q / ( & K )  can be written 

U: = d ( r ' )  cos2 4' sin 6' - B(r ' )  sin2 $' sin O', 
U: = - { d ( r ' )  + B(r ' ) }  sin 4' cos 4' sin 8' cos 6' 

U,* = %?(r') sin $'cos 4'sin28', 

SZ: = { 9 ( r ' )  + €(r')}  sin $' cos $' sin 6' cos d', 

SZ; = 9 ( r ' )  cos2 q5' sin 6' - 8(r ' )  sin2 4' sin d', 

and L-2: = -cosd', 

where d', $' and r' = 2h/a = 2 cosh a are the spherical co-ordinates of the centre 
of sphere I in the space-fixed reference frame. Computed values of the functions 
d, 93, %, 9 and € are given in table 1 for a number of values of r'. 

The trajectories of sphere I relative to sphere I1 are the integrals of the 
dynamical equations 

dr'ldt" = U,*, 

d8'ldt" = - UZlr', 

and dq5'/dt* = U,*/r'sind', 

where t* = Kt is the dimensionless time and U*,, U*, and U z  are given in (10). 
These give 

cos 6' = Bf(r ' )  

and sin 8' sin 4' = +J(r') {C + h(r')}$, 

where 

and 

and B and C 2 0 are constants. The trajectories of sphere I are then the lines of 
intersection of the two families of surfaces defined by (11). The y' and z' co- 
ordinates of the trajectories can be calculated as functions of r' from 

and 

y' = c r'f(r') {C + h(r')}t 

z' = Bry(r'), 

using the values o f f ( r ' )  and h(r') given in table 1. The constants B and C in (13) 
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are related to yk and 22, the asymptotic values of y' and x' as r'+ 00, by B = 22 

and C = (yk)z. 

I I I I 

c=9 
3 -  

- - 

c=4 - 

Y' - 

c= 1 - 

- 
c=o 

I 

0 1 2 3 4 5 

r' 

FIGURE 3. Polar plot of sphere trajectories in the plane 8' = in. The ordinate is $: = An - $'. 

As a graphical illustration of the results consider the case when z: = 0, for 
which z'(r') = 0 so the trajectories are two-dimensional. In  figure 2 are shown the 
trajectories, y' versus x', for four values of G corresponding to asymptotic values 
of y' of 0, 1, 2, and 3. Although not shown, the trajectories are symmetric about 
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the y' axis. A polar plot of these same trajectories is given in figure 3, which 
shows how r' varies with & = +n - $' when 0' = in. A comparison of calculated 
and observed trajectories is shown in figure 4. The experimental points are taken 
from a figure (number 6) of a paper by Darabaner & Mason (1967). Although there 
are not sufficient data given to determine the precise value of C for the observed 
trajectory, the data fit fairly well the theoretical trajectory for C = 2. Since the 
calculated trajecltory is exact, the deviations of the experimental data from it 
are due apparently either to errors in measurement or to effects from inertial 
or external forces or wall interference not included in the analysis. 

I 1 

.7 c 

X' 

FIGURE 4. Comparison of calculated and observed trajectories in the plane z' = 0. The 
circles are experimental points from figure 6 of the paper by Darabaner & Mason (1967); 
the co-ordinates r' and x' are related t o  p1 and pz of that paper by r' = 2pJa and x' = 2p2/a. 

An important application of these results is the determination of the viscosity 
of suspensions of spherical particles having concentrations in the range of 1 yo 
to  20 yo volume fraction solids. For these concentrations the dominant dynamical 
event is the motion of isolated pairs of interacting spheres in a uniform shear 
field. It can be shown that viscosity of a suspension is given by an integral ex- 
pression consisting of an integration of the local shear stress over the sphere 
surfaces for a given configuration of spheres and a statistical averaging with 
respect to the probability distribution of configurations. The surface stress can 
be calculated directly from the velocity field given by (4), and the configuration 
probability can be obtained from the trajectory equations (13). The derivation of 
the expression for the viscosity and numerical results calculated from it will be 
reported in a later communication. 
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4. A sphere near a plane wall 
Another type of flow problem that can be treated by the analysis of $2  is the 

creeping motion of a sphere near a plane wall. The solution of this problem can 
be obtained easily by allowing the radius of one of the spheres to become infinite, 
i.e. aI1 + co, while the size of the other remains fixed (aI = a). The determination 
of the coefficients ALn and Bkn is simplified in this case by the fact that all of the 
AO,, equal zero. This follows from ( 4 4  and ( 5 )  and the condition that we = 0 on the 
plane x = 0 (or 6 = 0). 

T 

FIGURE 5 .  Co-ordinate geometry. The x, y plane is the plane of the 
stationary disk at  6 = 0. 

AS an example of a problem of this type, consider the motion of a sphere in a 
fluid between two parallel disks, one of which rotates with angular velocity w 
while the other at z = 0 is stationary. The disks are assumed large enough that 
edge effects are negligible, and the sphere is much nearer the stationary disk so 
that its motion is unaffected by the rotating disk. The undisturbed velocity field 
is u0 = (ox/Z) e, x r,, where 1 is the distance between the disks and 

ro = (pcosq5+S)e,+psinq5eg 

is the position vector in the plane z = 0 measured from the axis of rotation 
(see figure 5 ) .  The boundary conditions (3) for this motion are, in cylindrical 
co-ordinates 

V i  = [U, + Q,(z - A)] GOS q5 + [U, - Q,(x - h) - (w&/E) z ]  sin q5, 

V i  = - [U, + Qz,(z - h)]  sin q5 +p(Q, - wz/Z) + [U, - Q,(x - h)  - (w&/Z) z ]  cos 4, 

Vz = -Q2,pcos$+U,+pQ,sinq5 

and 
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on the surface of the sphere ([ = a) and V P  = Vil = Vil = 0 on the plane = 0. 
From these the constants ALn and BLn can be determined by the procedure 
described earlier. Note that all of the B:n for lml 2 2 are zero. 

By the linearity of the Stokes equations the velocity field and hence the force 
and torque on the sphere each can be separated into contributions resulting 
from the translational, rotational and shear components of the fluid motion 
corresponding to the following sets of boundary conditions : 

Translation Rotation Shear 
( = a !  Ut = u ur = Qxxr-he , )  u8 = 0 
( = O  Ut = 0 ur = 0 us = 0 
r + c o  Ut = 0 ur = 0 u* = uo 

The force and torque on the sphere are then sums of contributions arising from 
these three independent flow fields. The values of the Cartesian components of 
these quantities calculated from (8) are given in table 2 in terms of the following 
dimensionless quantities. 

Fromm= - 1 :  
FZ = FL16npaUz, T r  = TL18npaBUx, 

F z  = F:/6npa2Q2,, TL* = T;/8npa3QV, 

Fz = Ti = 0. 

From m = 0:  F r  = FE/6npa&, TL* = T;/8npa3Q2,, 

Ti* = T@i-pa3w(h/l), 

Fg = F: = Ti = 0. 

From m = + 1: FE = F~I6npaU,, 

FL* = P;/6npa2Q,, 

F;* = F;/6npa~h, 

TZ = TL/8npa2U,, 

TL* = T!J8npa3Qx, 

Tg* = T;/4npa3~, 

where K = wall is the local shear rate in the undisturbed flow uo. Most of the 
values in table 2 have been obtained previously by other investigators, although 
values for a < 0.08 generally have not been reported. Results for Fg and TF 
were first obtained by O'Neill (1964) and values of FL* and T'y' by Dean & 
O'Neill(l963); more accurate values have since been reported by Goldman, Cox & 
Brenner (1967~).  Values of Fi* and Ti* have been calculated by Goldman, 
Cox & Brenner ( 1967 b )  by a method which does not require the determination of 
the fluid velocity field. Numerical results for Ti* have been reported by Jeffery 
(1915) and for 3': by Brenner (1961) and Maude (1961). Hence, the only new 
quantity needed for this flow problem is Ti*. 

Two experiments that are described by this analysis are the determination of 
the force and torque needed to hold the sphere stationary and the determination 
of the instantaneous velocity of the sphere in free motion. For the former 
u = 8 = 0, so F = F6 = (6npa~hFr)  e, 

and T = Ts = 8np3{(&d';*) e, + (whT;*/l) e,>. 
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For the latter F = T = 0, from which we obtain 

u, = u, = Q, = 0,  

and Qa = - (wh/Z) (Ti*/TL*). 

Values of U,/Kh and Qx/+K as functions of h/a have been reported by Goldman, 
Cox & Brenner (1967b). 
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